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Thermally-driven linear vortex 
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Institute, Florida State University, Tallahassee, Florida 

(Received 24 November 1970 and in revised form 17 February 1971) 

We investigata steady axially symmetric small Rossby number flows in which the 
driving consists of prescribed axial heat sources. By letting the velocity be 
proportional to the shear at the bottom surface we study the effects of that 
boundary condition on the resulting flows. 

A multi-boundary-layer structure is found in the core, surrounding the heat 
sources. That structure depends on the relative magnitudes of the aspect ratio, 
stratification parameter and Ekman number. 

1. Introduction and formulation 
We investigate the motion resulting from a distribution of heat source8 pre- 

scribed along the axis of rotation of a body of fluid having small departures from 
a state of rigid rotation and stable stratification. We will call such a state the basic 
state. The fluid is bounded at z’ = 0 by an infinite horizontal boundary and at 
z’ = h by an infinite free surface assumed to be horizontal. Such an assumption is 
justified if Q21/g < 1 in which case all of the thermodynamic variables of the 
basic state depend only on z‘ and that flow can be taken to be steady. 

We then propose to study a well-posed linear problem and understand the various 
flow regimes which are found for different values of the parameters entering the 
problem. Although one could seek amotivation for this work in the understanding 
of strong atmospheric vortices, our model does not claim to describe these 
natural phenomena but rather it develops our physical intuition as to the im- 
portance of the various mechanisms for the different flow r6gimes. 

Write 
1 ael 1 

q(z‘) = - - lim r‘ - = - - lim H’, (1.1) Q rp-0 ar’ Q r , + ~  

where ( )’ denotes dimensional quantities and q(z’) is the dimensionless O( 1) 
prescribed axial heat flux. Q has dimenaions of temperature and H’ is the heat 
flux. We take the Rossby number 

E = WhQ/Q2P (1.2) 

to be small compared to unity and use the linearized equations; a is the coefficient 
of volumetric expansion, g is gravity and I is some horizontal scale to be defined. 
The Ekman number 

E = vv/Bh2 (1.3) 
5 1  F L M  48 
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measures the relative importance of the viscous to Coriolis forces. Here vv, 
V ,  are the vertical and horizontal eddy coefficients of viscosity. In  natural 
phenomenon these coefficients depend upon the size of the turbulent eddies 
and upon the degree of stratification of the flow. Furthermore, in rotating flows 
some distributions of angular momentum are stable to lateral displacements and 
thus one would expect turbulence to be anisotropic. For simplicity we take vv 
and v, to be constant and we define a horizontal scale 1, to be 

= h(KH/KV)B,  (1 .4)  

where v = V , / K ~  = V , , / K ~  is a single Prandtl number. This horizontal scale does 
not imply that the lateral boundary is at r’ = I; rather we assume that all the 
physical quantities tend to zero as r’ -+ 03. 

We denote by h the aspect ratio defined as 

h = h/l = ( K ~ / K ~ ) *  (1.5) 
and treat h as a parameter. 

proportional to the ratio of the Brunt-Viiisiila frequency squared 
Another parameter of importance is the stratification parameter S which is 

N 2  = agAT/h 

to the angular frequency of rotation squared Q2, i.e. 

S = nh2(agAT/hQ2) = nh2N2/Q2, (1.6) 

where AT is a measure of the temperature difference of the basic flow between the 
levels z’ = 0 and z’ = h. By allowing S to vary we will parametrize the importance 
of the effects of stratifioation relative to those due to rotation. 

Finally, we formulate the boundary condition on the z’ = 0 surface as follows: 
We allow the horizontal velocity vector to be proportional to the horizontal 
shear vector near z’ = 0. By varying the constant of proportionality between the 
horizontal velocity vector and the shear vector we will be able to model flows 
having, at x’ = 0, a rigid boundary or a free boundary as limiting cases. (For 
relevance of this type of boundary condition to atmospheric flows see Taylor 
(1915).)  

For E 6 1 ,  boundary layers are found along the axis and along the horizontal 
boundaries. We shall use additive boundary-layer corrections which decay 
exponentially outside the boundary layer under consideration. 

Then, define and scale quantities in the usual manner, i.e. write 

r‘ = lr, 2’ = hz; ( u ’ , ~ ’ )  = sQZI(u,v); w’ = sQhw; 
pi = p;(x) - apo&e; T’ = T, + AT(+) + &e, } (1.7) 
p’ = p&) + sQ212p,p, 

where the subscript S denotes static quantities. The linearized Boussinesq 
equations read: 

radial momentum, 

angular momentum, 
2A = rp, + ED2$a; 

- 2$,, = EDaA; 

(1.8a)  

(1.8b) 
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vertical momentum, 

heat equation, 
0 = -pz+Eh2V2r-1+r+e; 

803 

where 

We have assumed the flow to be steady 
duced the stream function + such that 

= -ru, 

and axially symmetric and have intro- 

and A = W ,  H = r(ae/ar) (1.10) 

are the relative angular momentum and the heat flux. 
For boundary conditions we demand that, at r = 0 

A = + = 0, lim ~ - l @ ~  = 0, -1im re, = a@).  (1.11) 

(1.12) 

-0 7-0 

All quantities are to decay to zero as r + co; 

e = o ,  + = Q ,  (%--+A,+~) a = O  at z =  0; (1.13) 

and e=o ,  A ~ = + ~ ~ = + = O  at z = i .  (1.14) 

For /3 = 0,  the z = 0 boundary is a free surface while for p = 00 that boundary is a 
rigid surface. 

We then propose to look at various flows obtained by varying A, S as functions 
of the Ekman number E and by varying p. We will first consider in case 1 the 
simple problem in which p = 0; this corresponds to a model having two free 
surfaces. Case 2 then deals with the more general values of /3, but with 

E4 < 8 Q E-4. 

Finally, in case 2 we consider a simple example to illustrate the dynamics. 

where a, = nn-. The above expressions satisfy all boundary conditions at x = 0 , l  
(see (1.13), (1.14), p = 0). Thus there are no Ekman layers on the horizontal 

51-2 
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boundaries. In  the expression for A(r , z ) ,  we have omitted the mean angular 
momentum B where 

A = d z A ( r , z ) ;  s: 
this term must be zero since no torques are applied at r = 0,m and z = 0 , l .  We 
will have more to  say on this in case 2.  

If we substitute (2 .1 )  into the governing equations, we obtain a set of ordinary 
differential equations in r ,  namely, 

2a,$m+E(D21-az)An = 0, 

SDZ,$,-E(D?-a:)H, = 0, 

2a,  A ,  + H, + E(  DZ, - a:) ( h2D2, - a%)$, = 0, 

where, for simplicity, H, stands for the zonally averaged heat flux, i.e. 

H, = ra0,lar. 

As boundary conditions we demand that, at r = 0, 

and that 
$, = A ,  = DZ,$, = 0, H,+q, = 0, 

$,, A,, H,, Df$,+O as r j -co.  

After we eliminate A,, H, we obtain a single equation for $,, namely 

with, at r = 0, 

Now substitute 

E2(DZ, - ai)z(h2DZ, - a%)$, + SDZ, @, - 4a;$, = 0, 

$, = D2,$m = Of$, - (q,/Eh2) = 0. 

( ~ r ) K l ( ~ r )  
into (2 .4 )  and obtain a cubic equation for p2 which reads 

E2(pz - (p2h2 - a:) -I- 5,u2 - 4 4  = 0. 

( 2 . 2 ~ )  

(2 .2b)  

( 2 . 2 4  

( 2 . 3 ~ )  

(2 .3b)  

(2 .4 )  

(2.5) 

( 2 . 6 )  

It can be shown that (2 .6 )  has no negative real roots ,uz. 
Thus, by using the three roots of p with Rep > 0 we could construct an exact 

solution for $,Jr) which would satisfy all of the boundary conditions at  r = 0, co. 
A,(r) and 0,(r) or H,(r) could then be determined since ( 2 . 2 ~ )  and (2 .2b )  are 
Poisson equations in which the meridional circulation redistributes the basic 
angular momentum and temperature stratification. The algebraic solution of 
(2 .6 )  for the roots of that sextic tends to obscure the physics. Instead, we will 
assume E < 1 and use singular perturbation theory to find approximate expres- 
sions for the roots and therefore for $,. Furthermore, we will only consider two 
terms to balance in (2 .6)  and we will discuss the six possible balances. The first 
term in (2 .6 ) ,  the viscous term, is much smaller than the last term except possibly 
when Ipl 9 1 .  A consistent lowest-order approximation is to neglect a: compared 
withpz in the factor (pz - By taking a, N O( 1 )  we tacitly assume that all the 
energy is present in the lowest modes. This assumption is substantiated later on 
(see (3 .18) ) .  Then (2 .6)  reads 

E2h2p6 - E2a: p4 + Xp2 - 4 ~ :  = 0. (2 .7 )  
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Each of these balances will hold in a given region of the parameter plane (A, S). 
For two-terms of (2.7) to balance we must demand that the remaining ones are 
small compared to those retained. These restrictions will provide us with relations 
among A, S and E which can be drawn as straight lines in the (A ,  S )  plane provided 
we measure quantities on both axes on a logarithmic scale. On these bounding 
lines more than two terms balance and the representation for the flow is more 
complex. These lines divide the first quadrant of the (A,  S )  plane into four sectors 
as shown in figure 1. Table 1 summarizes the salient features of the dynamics of 
the core region. Column four indicates the number of degrees of freedom that 
each boundary layer satisfies. These degrees of freedom must always add up to 
three for any multi-boundary-layer structure of the axial region. 

t 

E Ef 1 
S 

FIG- 1. Boundary layers in parameter space. 

E-f 

Let us now consider the various possible two-term balances. 
(i) Sp2 - 4a: = 0, where 

S 9 (EA)P, S 9 E ,  
for the neglected terms in (3.7) to be small. These restrictions place us in sectors 
I1 and IVof figure 1. This is the hydrostatic layer (seeveronis 1967,and Barcilon & 
Pedlosky 1967a, b ) .  Since there is only one root with Rep > 0, this layer has only 
one degree of freedom which is used to satisfy the angular momentum boundary 
condition at r = 0. 

(ii) &(E2p4 + 4) = 0, with restrictions 

S < E ,  A<Et ,  

which place us in sector I11 of figure 1. A layer of this type, called the upwelling 
layer, was considered by Pedlosky (1968) in the study of vertical transports of a 
homogeneous rotating fluid on the p plane. Two roots with Rep > 0 enable us to 
accommodate two boundary conditions at r = 0. 
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(iii) (E2h2p6 - 4 4 )  = 0, with restrictions 

S < (Eh)*, h % Et ,  

places us in sector I of figure 1. The layers arising in this region of parameter space 
were first discussed by Stewartson (1957) for homogeneous fluids; Barcilon & 
Pedlosky (1967a, b )  showed their relevance in the presence of weak stratification. 
We now have three roots with Rep  > 0; thus this layer can account for the 
three axial boundary conditions. 

All of the above balances contained the term 4ai which represents Coriolis 
forces. The remaining balances are then independent of the basic rotation. 

(iv) E2h2p4 + S = 0, with restrictions 

S % (EA)*, S % 

puts us in sector 11. This is the buoyancy layer in which viscous forces balance the 
buoyancy term and, in the energy equation, a balance is found between conduc- 
tion of the perturbation field and advection of the basic temperature field. Such a 
layer was discussed by Barcilon & Pedlosky ( 1967 a, b )  and Veronis ( 1967). There 
are two roots for which Rep > 0, i.e. this layer has two degrees of freedom. 

(v) p2( - E2aip2 + 8) = 0, with 

( E / V  % 8 9 E,  

i.e. we are now in sector I V  of figure 1. This layer and the next one, do not, to 
our knowledge, appear in the literature; we call these layers the Stokes layer and 
the viscous hydrostatic layer. In  the viscous hydrostatic layer, viscous forces are 
dominant but the fluid is sufficiently stratified to allow for a hydrostatic balance 
in the vertical. Only one degree of freedom is associated with each layer. 

(vi) E2p4(h2p2 - a;) = 0, with 

h < Et ,  S < (E/h)2, 

which put us in sectors I11 and IV of figure 1. This is the Stokes layer in which, due 
to its extreme thinness, viscous stresses completely overwhelm Coriolis and 
buoyancy forces . 

Let us now briefly review the core dynamics relevant to the various sectors of 
figure 1. 

In  sector I, the Stewartson layer dynamics is the only relevant dynamics and 
we have 

(2.8) 

where 7, = (2a,/Eh)+ and for convenience we introduced the function 

@,(r) N (qn/6Ayna,) {P(y,r) - e-9inP(eiiry,r) - ejinP(e-@ny,r)), 

P(x)  = XKI(4, (2.9) 

where the argument x can be complex. Meridional motion redistributes the basic 
angular momentum and temperature fields and thus drives Poisson equations 
for A,(r) and Hn(r). The heat flux is composed of a boundary-layer contribution 
plus an interior contribution. Because 4 w O(E/h2)+ (see table 1) from the heat 
equation we deduce that the boundary-layer contribution is 

(S/E)@n(r) O ( S / ( E V ) :  
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Hence to lowest order the heat flux and temperature distributions are just those 
given by conduction. The stratification is so weak that advection of the basic 
temperature field is negligible to lowest order so that 

H,(r) -~,P(a,r)* (2.10) 

The angular momentum is also made up of a boundary-layer and an interior 
contribution and reads 

A,(r) N (qn/2am) {F(a,r) - Q[F(y,r) + F(y,re+") +F(y,re-fin)]}.  (2.11) 

Thus, whenever S, h lie in sector I, the meridional motion consists of a closed gyre 
within a distance (Eh)* of the axis, the isotherms are determined conductively; 
the angular momentum distribution is O( 1) in the interior and is brought to zero 
in the Stewartson layer. Because both boundaries a t  z = 0, 1 are free surfaces, 
the Ei-Stewartson layer is absent; its existence relies on vortex tube stretching 
via Ekman-layer suction. 

Sector I1 of figure 1 seems to be the region of most physical interest. Buoyancy 
and hydrostatic core layers when combined have three degrees of freedom and can 
account for all of the axial boundary conditions. The stream function is composed 
of a hydrostatic part and a buoyancy part, namely, 

(2.12) 

where ,a, = 2a,/S* and y = Si/(Eh)g are the inverse length scales appropriate to 
the hydrostatic and buoyancy layers. Meridional motion consists of two parts; 
the heat sources near the axis induce vertical motions in the buoyancy layer. 
These vertical motions create lateral motions in the thicker hydrostatic layer. 
Note that there is no meridional motion outside the hydrostatic layer so that the 
radial extent of a meridional cell is O(S4). Depending on the size of S ,  this may be 
smaller, comparable or larger than the radial conduction distance which is O( 1). 

(2.13) 

Thus, the heat flux consists of t h e e  parts. The final term is the heat flux that 
would be present if conduction were the only mechanism that could transfer heat. 
The remaining terms result from the advection of the basic temperature field in 
the buoyancy layer and the hydrostatic layer. Finally, the angular momentum 

(2.14) reads 

To lowest order, angular momentum in the buoyancy layer is negligible and A ,  
consists of an interior contribution P (any), which is the thermal wind associated 
with the conduction temperature profile, plus a hydrostatic contribution which is 
forced by the advection of the basic angular momentum by meridional motions. 

Next, consider sector I11 of figure 1. The relevant layers are now the upwelling 
layer and the Stokes layer. Here 

$n(r) w (iiq,) [F(wretin) - F(wre-@n)], (2.15) 

where w = (2/E)*. Only the upwelling contribution is included since the contribu- 
tion in the Stokes layer is O(h2/E) which is negligible? in sector 111. (Note that 

t The neglected term is (ih2/E)p,P(a,r/h). 

N (Ban/&) (F(1~nr)  - + F ( ~ r e " ~ )  - + F ( ~ r e - " ~ ) } ,  

Next, solving for Hn we get 

H,(r) - - $q,[B'(yreii") +F(yre-Bi")] + [4qn/ (4-S)]  [F(p,r) - F ( a , r ) ] .  

An(') N ['an/am(4-S)l [F(anr) - F ( ~ n ~ l l *  
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such a layer is needed to bring awl& to zero at the axis.) The vertical velocity is 
largest in the Stokes layer. Again, the heat flux and angular momentum dis- 
tributions are 

(2.16) 

and An(r)  - (qn/2a,) {F(anr)  - +F(wre@“) - $$(wre+n)}. (2.17) 

As  in sector I, the stratification is so weak that conduction of heat occurs to 
lowest order. The angular momentum distribution is adjusted to zero within the 
upwelling layer. 

Sector I11 is similar to sector I. The Stewartson layer of sector I splits into the 
upwelling layer and the Stokes layer. The role of the latter is simply to adjust the 
vertical velocity w to satisfy the boundary condition a t  r = 0. 

Finally, region I V  consists of three layers: the hydrostatic, the Stokes, and the 
viscous hydrostatic layers. Here 

where ,un = 2an/St and mn = 84 (anE) are the decay rates associated with the 
hydrostatic and viscous hydrostatic layer respectively. The contribution due to 
the Stokes layer is again negligible? in so far as $-n is concerned. The heat flux and 
angular momentum distributions are found to be 

Hn(r) N - C%nl(4- S)I {p(anr) - F ( P n r )  + J’(mnr)} (2.19) 

$-n(r) N (EqnILs) { p ( ~ w , r )  -F(mnr)} ,  (2.18) 

and (2.20) 

Sector I V  is then quite similar to sector 111. The lowest-order angular momentum 
is identical; the Stokes and viscous hydrostatic layers take over the roles of the 
buoyancy layer. 

Thus, from the above we see the wealth of possible axial structures that could 
coexist in a vortex when the surroundings are stably stratified. For ,8 0 the 
lower boundary will exert a torque on the interior and therefore an Ekman layer 
will be present. Therefore E* layers, which rely on Ekman stretching, will also be 
present in the core. Aside from this added complication the core dynamics 
preserves the same character for p + 0. 

3. Case 2, p + 0 
Before solving the differential equations, let us anticipate some results per- 

taining to the angular momentum. The boundary condition at z = 0 tells us that 
angular momentum can be gained or lost through z = 0 via viscous torques. 
Whenever A > 0 ( <  0 ) ,  near z = 0, there is a loss (gain) of angular momentum. 
Because of the prescribed boundary condition at the free surface no angular 
momentum can be imparted or lost at x = 1. 

Consider now an annular ring of fluid, extending from z = 0 to z = 1 and from 
r to r + Ar. Let 3 be the vertical average of A(r,  z) .  To be specific, suppose 

A(r,O) > 0 

(an analogous discussion follows if A(r, 0) < 0). There is a viscous torque at z = 0 
that is trying to decrease the value of 3. To maintain a steady flow we must have 

t The neglected term is (&h2/Ea~)P(a,r/h).  
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a net flux of angular momentum into the annular ring. Advection of angular 
momentum is ruled out by the linearization of the equations and the vanishing of 
the vertical velocity at z = 0 , l ;  hence, radial diffusion of angular momentum 
must negate the loss of angular momentum through z = 0. We can put this 
statement into a mathematical form by integrating (1.8b) from z = 0, to z = 1 
and applying the boundary conditions; we get 

DqB = /?A(?., 0). (3.1) 

Equation (3.1) has for a formal solution 

where the boundary conditions at r = 0 are satisfied and 
P r n  

since A+ 0 as r+m. We see that A(r,  0)  cannot have one sign for all values of r :  
the net torque acting at  z = 0 must be zero for a steady state to prevail. After 
substituting (3.3) into (3.2), we have 

d = gp (y2-r2)A(y,O)-. dY La Y 
(3.4) 

Suppose we find A(r, 0) > 0 for r < ro and A(r, 0)  < 0 for r > ro. Then, for all 
r 3 ro, we have < 0. Thus the region T > ro is the ‘surroundings’ of the vortex 
cell having a horizontal dimension of ro. 

Now, we shall investigate the structure of the solution when p + 0. The 
change in boundary conditions at z = 0 complicates the problem since a simple 
representation for the solution (e.g. (2.1)) cannot be found. Consequently, 
z derivatives (as well as r derivatives) will be involved in boundary-layer analysis 
near r = 0. Moreover an Ekman layer exists at z = 0. By restricting our attention 
to that part of the fluid outside the Ekman layer, we may use the compatibility 
conditions? at x = 0 whenever X Q E-* and the radial scales involved are larger 
than E3. The general compatibility condition at z = 0 can be found to be 

-E a aA _ -  all. - 
ar 2(1+p2E) (&-’) %’ 

This condition when applied to the hydrostatic interior simplifies t o  

and if 0 < 1 Q E-* the above reads 

+(r, 0) = *E/YA(T, O ) ,  q r ,  0) = 0. 

There is no Ekman layer at z = 1. 

(3.5) 

t See, for example, Greenspan (1968, p. 46). 
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For reasons to be apparent shortly, we restrict our attention to values of the 
stratification parameter scbtisfying Et < S < E-4. Except for the Ekman layer, 
the fluid consists of two regions, a non-hydrostatic core region (the buoyancy- 
layer region) and a hydrostatic region. We call the ‘ interior ’ here any hydrostatic 
region, regardless of its radial scale. The purpose is to determine the flow and heat 
flux distributions of the interior region. We write $ , A ,  Has the sum of two parts: 
a non-hydrostatic part, denoted by a subscript ‘I?’, and a hydrostatic part, 
denoted by a subscript ‘ H ’. The boundary conditions at r = 0 are: 

Since the radial scale of the non-hydrostatic layer is much smaller than unity, we 
have, from the heat equation, 

Since S 9 Et ,  the thermal wind balance prevails in the hydrostatic region, i.e. 
@N = ( E / S ) H N *  (3.8) 

2(aAH/az) = HH. (3.9) 

Combining (3.7), (3.8) and (3.9), we find 

@H = [dz) - a A N / a z l *  

In  case 1, we saw that in the buoyancy region the angular momentum distribution 
was negligible; therefore the boundary conditions on the hydrostatic region are 

@H = (E/S)p(x), AH = 0, H H  = 0 at r = 0. (3.10) 

After dropping the subscript H we write the governing equations for the hydro- 
static region as 

(3.11) I D2$ = (E/S)D2H, 
2aAlaz = H ,  

- 2 a@/az = E D ~ A ,  
subject to (3.10) at r = 0 and 

(3.12) 

The vanishing of aApz at z = 0 derives from the absence of a boundary layer for 
0 and therefore 0 = H = 0 at the edge of the Ekman layer. A single separation of 
variable does not lead to a solution. However, we can divide the hydrostatic 
problem into two parts 

($9 A ,  H )  = ($0, A,, No) + ($UA1,4),  (3.13) 

1 $ = 0, aA/az = 0, H = o at z = 1, 

@ = $ E P A ,  aA/az= 0, H =  0 at Z =  0. 

where the first term is just the solution we would have if = 0,  i.e. 
W 

@o(r, z )  = (E/S)  c q,B(2nnr/S+) sin nnz, 
n=l 

(3.14) 
m 

Ao(r, z )  = ( 2 / ( 4  - S) )  C [P(nnr) -F(2nnr/St)] cos nnz, 
n=l nn 

m I 
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The solutions ($,, A,, H,) satisfy the same differential equations (3.11); the boun- 
dary conditions are 

(3.15) I $, = 0, H, = 0, A,  = 0 at r = 0, 

$, = 0, H, = 0, aA,/az = 0 at z = 1, 
9, - BEPA, = $EPA,, H, = aA/az = 0 at z = 0 

For the ( ), problem, the forcing is now at z = 0. Take a Hankel transform in the 
r direction, and solve the resulting ordinary differential equation in z with the 
appropriate boundary conditions at  z = 0,l .  The result is an integral representa- 
tion for $,, A,, H,, viz. 

A,(r,x) = ~om(kr)J,(kr)$(k,  0) [b,(k) coshk(1-z) +b , (k )  coshyk( 1 - z ) ] d k ,  

$,(r,z) = -1 (kr)J,(kr)A,(k,O) [kb,(k)sinhyk(l - z ) ] d k ,  
y2-1 * 

2Y 0 

H,(r,z) = - 2 ( k r ) J l ( k r ) ~ o ( k l O )  [kb,(k)sinhk(l-z) +ykb,(k)sinhyk(l - z ) ] d k ,  
!Om 

where (3.16) 

1 y = (+S)*, A^,(k, 0) = Ao(r, O)J,(Wdr, 
/OW 

b,(k) = -Py2sinhyk((y2- l)ksinhpk-/?ycoshyksinh k +/?y2sinh ykcoshk}-1, 

b,(k) = - [b,(k)sinhk]/[ysinhyk]. 
(3.17) 

Using (3.14), the definition for P(z),  and invoking Abramowitz & Stegun (1964) 
we can write A0(k, 0) as 

(3.18) 

For 'reasonable' heating functions q(z)  we anticipate that for n % 1, p;, N n-2 
and therefore A^, N l/n6 for a given k. We can then argue that the fundamental of 
q(z) will be the dominant component. To illuscrate we consider a simple example 
in which the axial heating is taken to be equal to sin nz, i.e. we let 

qn = $, (m = 1,2,3, ...) (3.19) 

where a,, is the Kronecker delta. 
After substituting (3.18), (3.19) into (3.16), we approximate these integrals by 

performing the numerical integration up to a sufficiently large value of k. Using 
(3.13) and (3.14) we find $ , A ,  H .  Lines of constant $ , A ,  H are shown in figure 2 
for S = 8 and /3 = 0, 1, 100. 

For P = 0,  we have two free surfaces and the flow is symmetrical about z = 0.5. 
The non-hydrostatic layer (the buoyancy layer) screens the interior from the 
prescribed axial heat sources. These are felt in the interior the form of an axial 
distribution of mass sinks and sources. From (3.8), the radial velocity at the 
edge of the buoyancy layer is proportional to - cos nx implying inward radial 
motion for 0 < z < 0.5 and outward radial motion for 0.5 < z 6 1.0. Then, the 
streamlines in the interior emanate from the core, for 0.5 < x < 1.0, and return to 
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the core, for 0 < z < 0.5, never touching the z = 0 , l  surfaces. This meridional 
recirculation redistributes the basic angular momentum, creating a region of 
negative relative angular momentum ( z  > 0.5) and a region of positive relative 
angular momentum ( x  < 0.5). Then, the line z = 0.5 is the line of zero angular 
momentum. The meridional circulation also redistributes the basic temperature 
stratification and the lines H = const. are also symmetric about x = 0.5. 
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FIGTJRE 2. Lines of constant $, A, H for S = 8 and /3 = 0, 1, 100. 

For /3 = 1, the z = 0, 1 boundaries no longer play the same role: angular 
momentum is lost at the lower boundary. To replenish this loss of angular 
momentum (which is only slight here) some of the interior stream tubes skim and 
dip into the lower Ekman layer. Now the A = 0 line bends downward and 
intersects the x = 0 surface at ro = 1-8, enclosing a region for which A > 0. 
Finally, the heat flux lines H = const. are no longer symmetric since the sym- 
metry in the streamline pattern is destroyed by viscous effects found at z = 0. 

For p = 100, for all intents and purposes the lower boundary acts like a rigid 
surface. Now, the stream tubes penetrate deeply into the lower Ekman layer in 
which basic angular momentum is lost by viscous torques. A (T ,  0 )  increases, as we 
move away from r = 0,  reaches a maximum, vanishes at T = r0 and becomes 
negative for r > ro. Therefore, positive vertical velocities are found at the edge of 
the Ekman layer in the vicinity of the axis. These velocities and the radial 
velocities found next to the axis are responsible for the peculiar behaviour found 
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in the corner. In  that region the angular momentum is small and positive with 
little or no rand z variations. The A = 0 line cuts the x = 0 surface at  r,, = 1.3, i.e. 
the radial extent of that region is smaller than the one found in the previous case. 
The strong asymmetries in the streamline pattern induce asymmetric redistribu- 
tions of the basic temperature field as shown by the lines H = const. The be- 
haviour near the corner is a consequence of the streamline recirculation in that 
region. 

4. Summary 
The ( A ,  8) plane contains sectors in which severa1 axial layers coexist and when 

combined yield an axial boundary-layer structure which satisfies three of the 
axial boundary conditions, the fourth one being satisfied by the diffuse interior. 
The extent to which the meridional cell penetrates in the interior depends upon 
the value of the parameters A, S.  By using torque considerations we were able to 
explain the presence and relative sizes of the cells of positive and negative relative 
tlngular momentum. Finally, very different flow behaviour is obtained for 
various values of p. For large /3, the streamlines in the interior penetrate the 
Ekman layer in the far field and erupt out of that layer before reaching the axis. 
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